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Abstract For real-world applications, virtual agents must be able to learn new behaviors
from non-technical users. Positive and negative feedback are an intuitive way to train new
behaviors, and existing work has presented algorithms for learning from such feedback. That
work, however, treats feedback as numeric reward to be maximized, and assumes that all
trainers provide feedback in the same way. In this work, we show that users can provide
feedback in many different ways, which we describe as “training strategies.” Speci cally,
usersmaynot always give explicit feedback in response to an action, andmaybemore likely to
provide explicit reward than explicit punishment, or vice versa, such that the lack of feedback
itself conveys information about the behavior. We present a probabilistic model of trainer
feedback that describes how a trainer chooses to provide explicit reward and/or explicit
punishment and, based on this model, develop two novel learning algorithms (SABL and
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I-SABL) which take trainer strategy into account, and can therefore learn from cases where
no feedback is provided. Through online user studies we demonstrate that these algorithms
can learn with less feedback than algorithms based on a numerical interpretation of feedback.
Furthermore, we conduct an empirical analysis of the training strategies employed by users,
and of factors that can affect their choice of strategy.

Keywords Learning from feedback · Reinforcement learning · Bayesian inference ·
Interactive learning · Machine learning · Human–computer interaction

1 Introduction

Within the eld of arti cial intelligence there exists a signi cant body of work on the problem
of designing agents to learn behaviors from human trainers [5,14,27], and speci cally on the
problem of learning from trainer-provided feedback [8,17]. In many cases [12,17] feedback
is treated as being representative of some numeric reward or value function associated with
the underlying task. Under such an interpretation, the agent seeks to maximize the expected
value of the feedback it receives for its actions.

In this work, however, we argue that trainer feedback is a more complicated form of
discrete communication between the trainer and the learner. Simply treating feedback as a
numeric reward signal (i.e., reward has a positive value, punishment has a negative value,
and the goal is to maximize the average return), will in many cases lose information about
the target behavior present in the trainer’s feedback. There are of course many possible
approaches to training via positive and negative feedback, which we will describe as training
strategies throughout this work. The trainer’s choice of strategy may depend on the nature
of the training task, on the nature of the learning agent, and on the trainer’s own background.
The trainer may even change strategies in response to the agent’s behavior.

In this work, we are speci cally interested in how the trainer’s strategy affects the use
of the lack of feedback as a form of implicit feedback, and how such feedback should be
interpreted. As a motivational example of this phenomenon, consider a common approach
to dog training, where trainers will provide a large amount of explicit reward in the form
of treats and conditioned rewards (i.e., clicker training), but very little explicit punishment.
When such an approach is taken to providing feedback, the lack of explicit reward (i.e.,
withholding a treat from a dog) can itself be interpreted as a form of punishment, indicating
that the dog’s previous actions were incorrect. If, however, the reverse strategy was followed,
and the trainer only provided explicit punishment, then the lack of feedback would indicate
that the dog’s actions were in fact correct. This work will focus on the rates at which trainers
give explicit and implicit feedback for correct and incorrect actions. If the learning agent
knows that implicit feedback is more likely for correct or for incorrect actions, it can use
that information to make inferences about the correctness of an action, even when no explicit
feedback has been given for that action.

Our work in this area has resulted in two main contributions with respect to understanding
trainer strategies that we present in this paper:

1. We characterize, based on empirical data collected from real users, the types of strategies
followed in practice by human trainers when teaching virtual agents, and look at potential
factors that could affect those users’ choices of strategy.

2. We present a probabilistic model which captures certain aspects of trainer strategy, and
use that model to derive two algorithms, SABL and I-SABL, which explicitly consider
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trainer strategy, and can therefore learn about the target behavior even from cases where
no explicit feedback is given.

Wedemonstrate that these algorithms canbe effective bothwith human and simulated trainers.
Experiments show that agents using these algorithms can not only bene t from knowing the
trainer’s strategy, but can infer that strategy online during training.

2 Background and related work

This work is part of a growing literature on the problem of designing algorithms which can
learn behaviors from human feedback. Our work is also motivated by work in psychology on
how animals and humans learn from positive and negative feedback, speci cally, the concept
of behaviorism [23]. Based on the insights gained from that work, we develop an approach to
learning from feedback which does not interpret feedback as numeric reward as most existing
work does, but instead as a form of discrete communication from the trainer. Here we will
discuss the existing work in machine learning as well as provide some background on the
psychological underpinnings of our work.

2.1 Machine learning from human feedback

There exists a large body of work on the problem of learning from human trainers, and specif-
ically on learning from trainer feedback. Some approaches [27] have treated human feedback
as a form of guidance for an agent trying to solve a reinforcement learning (RL) [25] prob-
lem. In that work, human feedback did not change the numeric reward from the underlying
RL problem, or the optimal policy, but improved exploration and accelerated learning. Their
results show humans give reward in anticipation of good actions, instead of rewarding or
punishing the agent’s recent actions.

COBOT [11] was an online chat agent with the ability to learn from human users using RL
techniques. It learned how to promote and make useful discussion in a chat room, combining
explicit and implicit feedback from multiple human users. The TAMER algorithm [17] has
been shown to be effective for learning from human feedback in a number of task domains
common in theRL research community. This algorithm ismodeled after standardRLmethods
which learn a value function from human-delivered numeric rewards. At each time step the
algorithm updates its estimate of the reward function for a state-action pair using cumulative
reward.

Similar to thiswork, other studies [16] have examined howuserswant to provide feedback,
nding that: (1) there is little difference in a trainer’s feedback whether they think that the

agent can learn or that they are critiquing a xed performance; and (2) humans can reduce the
amount of feedback they give over time, and having the learner make mistakes can increase
the rate of feedback. Our work differs because we focus on leveraging how humans naturally
provide feedback when teaching, not how to manipulate that feedback.

Of existingwork however, Policy Shaping [8] ismost similar to the algorithms presented in
this paper. In that work, and in ours, trainer feedback was interpreted as a discrete communi-
cation that depended probabilistically on the trainer’s target policy, rather than the traditional
approach of treating feedback as numeric reward. Both our work and Policy Shaping use a
model of the feedback distribution to estimate a posterior distribution over the trainer’s pol-
icy. In contrast to that work, ours focuses on handling different trainer feedback strategies,
whereas Policy Shaping assumes actions which do not receive explicit trainer feedback are
uninformative as to the trainer’s policy (though still informative about the underlying MDP).
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The algorithms presented in this work, however, use knowledge of the trainer’s strategy to
extract policy information from actions without explicit feedback. Further, our algorithms
can infer this strategy from experience, and so can adapt to a particular trainer’s strategy.

Other forms of feedback besides simple punishment and reward have also been explored,
including feedback strategies employed by lm directors, golf instructors, and 911 oper-
ators [9]. These experts gave rich feedback and direction in the form of explaining conse-
quences, querying learner understanding, using assistive aids, etc. Other work has considered
how users might assist learning algorithms by selecting a sequence of data in a classi cation
task [14].

In addition to the work on learning from feedback, there is a growing body of work that
examines howhumans can teach agents byprovidingdemonstrations of a desired behavior [3].
Learning from demonstration has been applied effectively to robot control problems, such as
robot navigation [6]. Other work has leaned motion control policies that can mimic motions
demonstrated by human trainer’s [4]. In all of these cases, similar to learning from feedback,
much of the challenge for the learning agent comes from the limited, sometimes incomplete
information provided by the trainer.

Interestingly, some work has been done comparing the effectiveness of learning from
demonstration against that of learning from feedback [18]. That work, however, suggested
that the relative performance of the two approaches was task dependent. In addition, we note
that in many cases it may not be possible for the trainers to actually demonstrate the desired
behavior. Unlike most work in learning from demonstration, where the intended meaning
of a trainer’s demonstration is clear, in our work the meaning of the trainer’s feedback can
initially be ambiguous, and errors in feedback, unlike erroneous demonstrations, must be
corrected as part of the learning process.

One approach to learning from demonstration is the use of algorithms for inverse rein-
forcement learning [1,5], where the learner attempts to identify the reward function of a
Markov decision process that is consistent with a user’s demonstrated actions, and identify
a full policy that is optimal under that reward function. A number of different algorithms
for inverse reinforcement learning (IRL) have been proposed, including maximum entropy
IRL [28], which searches for a reward function that leads to a similar distribution over state
trajectories as is observed in the training data.Another, similar approach isBayesian IRL [22],
which is of particular interest because it draws samples of the trainer’s reward function from a
posterior distribution over reward functions that is conditioned on observations of the trainer’s
policy. As our work assumes that the trainer’s feedback depends probabilistically on the their
desired policy, the same approach allows for sampling of reward functions from a distribution
conditioned on feedback instead of observed actions.

We suggest that it may be possible to combine the algorithms described in this work
with existing techniques for learning from demonstration, to allow an agent to learn from
both feedback and demonstration simultaneously. In Sect. 8 we describe an algorithm for
maximum likelihood inverse reinforcement learning, and show that it can be combined with
our framework for learning from feedback, allowing our framework to be applied to sequen-
tial domains. We suggest that maximum likelihood IRL could also be used for learning
from demonstration, making it possible to compute maximum likelihood estimates of trainer
reward functions and policies given data including both feedback and demonstrations. In this
work, however, we do not implement such an algorithm.

Existing work has shown that feedback can be combined with user demonstrations, for
example, by using feedback to weight the value of different user demonstrations used to
estimate the correct policy [2]. Other work has also shown that feedback can be combined
with reward from some underlying Markov decision process, or some prede ned shaping
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reward [12,13]. It should be noted that in both of these examples, feedback was not given
interactively, during the performance of a behavior, but was given as a critique to portions
of an agent’s performance that could be selected by the user after the agent had nished
performing the behavior. Our work focuses on dealing with feedback given in real time,
where the distinction between cases where the user is actively teaching the agent, and where
the trainer is passively observing the agent’s behavior is not always clear.

2.2 Behaviorism

The notion that trainers may follow different strategies while teaching is motivated by work
on behaviorism and techniques for animal training using punishment and reward. Behav-
iorism, a eld of psychology, considers how animals and humans learn from positive and
negative feedback. Skinner introduced operant conditioning, a concept of providing feed-
back to modify the frequency of voluntary behaviors [23]. There are a number of ways in
which punishment and reward can be combined to teach a behavior. These so-called operant
conditioning paradigms can be grouped into four categories [24]: positive reward (R+), neg-
ative reward (R−), positive punishment (P+), and negative punishment (P−). Here, reward
refers to any stimulus that would increase the frequency of an associated behavior, while
punishment would be a stimulus that decreases the frequency of a behavior. Positive refers
to adding a stimulus and negative refers to removing a stimulus. An example of R+ would
be the act of giving a dog a treat (reward by adding a desirable stimulus). An example of P−
would be the removal of a prized toy (punishment by removing a desirable stimulus). Thus,
both positive and negative reward encourage an associated behavior, while both positive and
negative punishment discourage an associated behavior.

Dog trainers have learned that using only positive reward (R+) to encourage desired
behaviors results in fewer unintended side effects for dogs than when positive punishment
(P+) is used to reduce undesired behavior [10]. We hypothesize that, in many cases, users
will tend to apply this concept when training virtual agents (even if they don’t realize they
are doing it). We will show how in situations where users do have a bias towards R+/P−
operant conditioning paradigms, learning algorithms that take these strategies into account
have a signi cant advantage when learning from human trainers.

3 Motivations: behaviorism and trainer strategies

The goal of this work is to characterize the different strategies followed by human trainers
when teaching virtual agents, and to build learning algorithms that take those strategies into
account. As part of this work, we develop a probabilistic model of how feedback is provided
under different strategies, and use this model both to classify strategies seen in practice, and
to build probabilistic inference algorithms to learn behaviors from such feedback.

3.1 Trainer strategies

In this work, we use an idealized model of the training process, in which the learning agent
takes a single action, and then may receive positive or negative feedback from the trainer.
We hypothesize that different trainers can differ in how they provide feedback, even when
teaching the same behavior. For example, when the learner takes a correct action, one trainer
might provide an explicit positive feedback while another might provide no response at all.

We classify a trainer’s strategy by the cases in which they give explicit feedback. Under
a balanced feedback strategy a trainer typically gives explicit reward for correct actions
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Table 1 Breakdown of strategies
observed in the online user
studies

Strategy Number of training sessions
exhibiting strategy

Balanced feedback 93

Reward-focused 125

Punishment-focused 6

Inactive 3

and explicit punishment for incorrect ones. A reward-focused strategy typically provides an
explicit reward for correct actions and no response for incorrect actions, while a punishment-
focused strategy typically provides no response for correct actions and explicit punishment
for incorrect ones. An inactive strategy rarely gives explicit feedback of any type (making it
impractical). Under a reward-focused strategy, the lack of feedback can be interpreted as an
implicit negative feedback, while under a punishment-focused strategy, it can be interpreted
as implicitly positive.Toa strategy-aware learner, the lack of feedback can be as informative
as explicit feedback.

These strategies roughly correspond to the operant conditioning paradigms described in
the behaviorism literature. A balanced feedback strategy would correspond to a R+/P+
paradigm, where both explicit punishment and explicit reward are used. A reward-focused
strategy would roughly correspond to a R+/P− paradigm, while a punishment-focused strat-
egy would correspond to a R−/P+ paradigm. An inactive strategy would correspond to a
R−/P− paradigm.

We conducted three online users studies as part of this work, in which each participant
went through one or more training sessions where they attempted to teach a virtual agent
to perform a simple behavior. Table 1 shows the number of training sessions, from the rst
two of these studies, in which each of these four types of strategies was used. A user was
classi ed as balanced if she gave explicit feedback for correct and incorrect actions more
than half of the time, while inactive means she gave explicit feedback less than half the time
in both cases. Reward-focused means correct actions received explicit feedback more than
half the time and incorrect actions received it less than half the time; punishment-focused is
the opposite case. Note that all four types were employed, but that a large percentage of users
followed a reward-focused strategy.We provide this sample of results here to help emphasize
the point that human trainers do follow a variety of feedback strategies. We will include a
more detailed discussion of strategies in Sect. 6.

3.2 Probabilistic model of trainer strategy

One of themain contributions of thiswork is a formal, probabilisticmodel of trainer feedback.
We will use this model both to characterize the strategies followed by users in the studies
we conduct, and more signi cantly, to build learning algorithms which use probabilistic
inference to identify target behaviors, while taking into account the trainer’s strategy.

This probabilistic model of human feedback encapsulates differences in trainers’ categor-
ical feedback strategies. We model the learning problem as a set of discrete observations of
the environment and a set of discrete actions that can be taken. The behavior being trained is
represented as a policy, that is, a mapping from observations to actions, which in this work
we will denote with λ.

Under our model, training is divided in to discrete episodes, in which the agent observes
the state of the world, takes an action and may or may not receive some feedback from the
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tr ai n er.  O ur  m o d el ass u m es t h at t h e tr ai n er first d et er mi n es if t h e a cti o n t a k e n  w as c o nsist e nt
wit h s o m e t ar g et p oli c y λ ∗ f or t h e c urr e nt o bs er v ati o n,  wit h s o m e pr o b a bilit y of err or . T h e
tr ai n er t h e n d e ci d es  w h et h er t o gi v e e x pli cit f e e d b a c k or si m pl y d o n ot hi n g. If t h e tr ai n er
i nt er pr ets t h e l e ar n er’s a cti o n as c orr e ct, t h e n s h e  will gi v e a n e x pli cit r e w ar d  wit h pr o b a bilit y
1 − μ + , a n d if s h e i nt er pr ets t h e a cti o n as i n c orr e ct,  will gi v e e x pli cit p u nis h m e nt  wit h
pr o b a bilit y 1 − μ − .1 T h er ef or e,  w h e n a c c o u nti n g f or err or i n t h e tr ai n er’s i nt er pr et ati o n, if
t h e l e ar n er t a k es a c orr e ct a cti o n it  will r e c ei v e e x pli cit r e w ar d  wit h pr o b a bilit y (1 − )(1 − μ + ),
e x pli cit p u nis h m e nt  wit h pr o b a bilit y (1 − μ − ), a n d  will r e c ei v e n o f e e d b a c k  wit h pr o b a bilit y
(1 − ) μ+ + μ − .

T h e p ar a m et ers μ + ∈ [ 0 , 1 ] a n d μ − ∈ [ 0 , 1 ] r e pr es e nt t h e tr ai n er’s pr ef er e n c e f or gi vi n g
n e utr al f e e d b a c k f or c orr e ct a n d i n c orr e ct a cti o ns, r es p e cti v el y, a n d e n c o d e t h e tr ai n er’s f e e d-
b a c k str at e g y. F or e x a m pl e, μ + = 0 .1, μ − = 0 .1 c orr es p o n d t o a b al a n c e d f e e d b a c k str at e g y
w h er e n e arl y e v er y a cti o n r e c ei v es e x pli cit f e e d b a c k,  w hil e μ + = 0 .1, μ − = 0 .9 c orr es p o n d
t o a r e w ar d-f o c us e d str at e g y,  w h er e o nl y a cti o ns i nt er pr et e d as c orr e ct t e n d t o r e c ei v e e x pli cit
f e e d b a c k. P utti n g t h es e el e m e nts t o g et h er, f or ti m e st e p t ( e a c h ti m e st e p c orr es p o n ds t o a n
e pis o d e  wit h t h e a g e nt o bs er vi n g t h e  w orl d, c h o osi n g a n a cti o n a n d r e c ei vi n g f e e d b a c k),  w e
h a v e a distri b uti o n o v er t h e f e e d b a c k ft c o n diti o n e d o n t h e o bs er v ati o n o t , a cti o n a t , a n d t h e
tr ai n er’s t ar g et p oli c y λ ∗ ,

p ft = f + |o t , a t , λ∗ =
(1 − )(1 − μ + ), λ∗ (o t ) = a t

(1 − μ + ), λ∗ (o t ) = a t ,
( 1)

p ft = f − |o t , a t , λ∗ =
(1 − μ − ), λ∗ (o t ) = a t

(1 − )(1 − μ − ), λ∗ (o t ) = a t ,
( 2)

p ft = f 0 |o t , a t , λ∗ =
(1 − ) μ+ + μ − , λ∗ (o t ) = a t

μ + + (1 − ) μ− , λ∗ (o t ) = a t .
( 3)

w h er e f + i s a n e x pli cit p ositi v e f e e d b a c k, f − i s a n e x pli cit n e g ati v e f e e d b a c k, a n d f 0

r e pr es e nts a l a c k of f e e d b a c k.
W h at is i m p ort a nt t o n ot e a b o ut t his  m o d el is t h at, d e p e n di n g o n t h e str at e g y ( a n d t h e

c orr es p o n di n g μ + a n d μ − p ar a m et ers) us e d, t h e l a c k of f e e d b a c k  m a y b e  m or e pr o b a bl e f or
c orr e ct a cti o ns t h a n i n c orr e ct a cti o ns, or vi c e v ers a.  T h er ef or e, t h e c orr e ct i nf er e n c e t o  m a k e
fr o m a l a c k of f e e d b a c k d e p e n ds o n t h e tr ai ni n g str at e g y b ei n g us e d.  T his  m o d el f or m ali z es
t h e i d e a t h at l e ar ni n g d e p e n ds o n t h e tr ai ni n g str at e g y b ei n g e m pl o y e d.

3. 3  N u m eri c r e w ar d v ers us dis cr et e f e e d b a c k

We c a n c o m p ar e t h e dis cr et e, pr o b a bilisti c i nt er pr et ati o n of tr ai n er f e e d b a c k us e d i n t his
w or k a g ai nst t h e n u m eri c al r e w ar d i nt er pr et ati o n us e d i n  m u c h of t h e e xisti n g lit er at ur e.
U n d er t h e n u m eri c i nt er pr et ati o n, e a c h a cti o n r e c ei v es a c o nti n u o usl y v al u e d r e w ar d si g n al,
a n d t h e a g e nt att e m pts t o fi n d t h e a cti o n  w hi c h  m a xi mi z es t h e a v er a g e r e w ar d r e c ei v e d.  We
ar g u e ( a n d o ur e x p eri m e nt al r es ults s u p p ort) t h at tr ai n er f e e d b a c k c a n b e i nt er pr et e d  m or e
eff e cti v el y as a f or m of dis cr et e c o m m u ni c ati o n b et w e e n t h e tr ai n er a n d t h e l e ar n er, all o wi n g
t h e a g e nt t o l e ar n t h e d esir e d b e h a vi or i n l ess ti m e a n d  wit h l ess eff ort o n t h e p art of t h e
tr ai n er.

T h er e ar e s o m e i nt er pr et ati o ns of tr ai n er f e e d b a c k t h at ar e  m or e e asil y r e pr es e nt e d u n d er
a n u m eri c al i nt er pr et ati o n, a n d t h at ar e n ot  m o d el e d b y o ur pr o b a bilisti c i nt er pr et ati o n.

1 N ot e t h at f or t h e μ p ar a m et ers, + a n d − disti n g uis h r e w ar d a n d p u nis h m e nt, a n d n ot e x pli cit/i m pli cit
f e e d b a c k as i n t h e  R+ / P+ n ot ati o n t a k e n fr o m t h e b e h a vi oris m lit er at ur e.
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Speci cally, our model does not consider the magnitude of the feedback provided for an
action, either the magnitude of an individual feedback signal, or the number of feedback
signals given in response to a single action. Under a numerical interpretation, an individual
feedback signal can be assigned different numerical values (e.g., the verbal response “good”
being given a smaller value than “Great!”). Under such an interpretation, a single action can
also receive multiple feedback signals, with the total value of these signals being assigned
to an action. Therefore, it is possible under a numerical interpretation of feedback for two
actions to each receive positive feedback, but one action to have a greater estimated value
than the other, and so be assumed to be preferable to the other.

Under our model, however, we do not directly consider the relative utility of one action
versus another. One action is not considered to be more “correct” than another, but is
instead considered more likely to be the correct action. It would be possible to interpret
the magnitude of feedback under our model, with the magnitude of feedback represent-
ing the certainty on the part of the trainer that the action was correct. That is to say, that
the trainer is less likely to erroneously give a feedback signal of large magnitude than
one of small magnitude. Therefore, when comparing two actions that have each received
one feedback signal, the action that had received the larger magnitude signal would be
considered more likely to be correct. Similarly, when more than one feedback signal is
given in response to an action, we would assume that if the action were not correct then
the trainer would have to have repeatedly given erroneous feedback signals to get such a
response. As making multiple incorrect feedback signals is far less likely than making a
single incorrect feedback, this would mean that an action receiving multiple positive feed-
back signals is more likely to be correct than one that has received only a single positive
feedback.

It is not clear, however, that the magnitude of users feedback actually re ects the rel-
ative utility of the action for which that feedback is given. Similarly, the number of indi-
vidual feedback signals may not directly relate to the users preference for one action over
another. There may be many possible interpretations for feedback of differing magnitude
and frequency, some of which may not convey much information about the correctness of
an action. For example, differences in the number or magnitude of feedback signals may
be the result of frustration on the part of the trainer, or some global measure of the agent’s
performance.

In the user studies presented in this work, we explicitly choose to consider neither the
magnitudeof a feedback signal (weonly allow for one level of positive andnegative feedback),
nor the number of feedback signals given for a single action (our learning algorithms only
consider the nal feedback given in response to an action). This interpretation gives trainers
the opportunity to correct a mistaken feedback immediately after giving it. Additionally,
mistakes early in the training process are easier to overcome, as the trainer does not need
to provide a large amount of feedback to outweigh the previous, incorrect feedback. As this
work will demonstrate, learning algorithms which treat feedback as something other than
a numeric reward signal, and which explicitly consider multiple possible interpretations of
feedback, can be much better suited to learning from human trainers.

4 Strategy-aware Bayesian learning

In this work, we develop algorithms for learning from feedback that account for differences
in trainer strategy. Speci cally, we take advantage of the fact that, under reward-focused
and punishment-focused training strategies, the lack of any feedback can convey as much
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Al g o rit h m 1 T h e S A B L al g orit h m.  T h e f e e d b a c k distri b uti o n p ( ft |o t , a t , λ∗ (o t ) = a ) is
d es cri b e d b y  E qs. 1 , 2 a n d 3 . t a k e A cti o n(a t ) d o es n ot r et ur n u ntil t h e e pis o d e fi nis h es.

∀ o ∈ O , a ∈ A : P [o , a ] ← 1
|A |

t ← 0
w hil e us er h as n ot t er mi n at e d l e ar ni n g d o

o t ← o b s er v e W orl d ()
a t ← ar g m a x a ∈ A P [o t , a ]
t a k e A cti o n(a t )
ft ← r e c ei v e F e e d b a c k ()
f o r all a ∈ A d o

P [o t , a ] ← p ( ft |o t , a t , λ∗ (o t ) = a ) P [o t , a ]
e n d f o r
P [o t , · · · ]  ← n or m ali z e ( P [o t , · · · ])
t ← t + 1

e n d  w hil e

i nf or m ati o n a b o ut t h e t ar g et b e h a vi or as e x pli cit f e e d b a c k.  We  will d e m o nstr at e e x p eri m e n-
t all y t h at t his a p pr o a c h all o ws a g e nts t o l e ar n b e h a vi ors i n l ess ti m e, a n d  wit h f e w er f e e d b a c ks,
w h e n c o m p ar e d t o a p pr o a c h es t h at i g n or e tr ai n er str at e g y.

4. 1  T h e S A B L al g orit h m

H er e  w e pr es e nt t h e str at e g y- a w ar e  B a y esi a n l e ar ni n g ( S A B L) al g orit h m.  T h e S A B L al g o-
rit h m ass u m es t h at tr ai n er f e e d b a c k is pr o vi d e d a c c or di n g t o t h e pr o b a bilisti c  m o d el pr es e nt e d
pr e vi o usl y.  Usi n g t his  m o d el of f e e d b a c k, S A B L c o m p ut es a  m a xi m u m li k eli h o o d esti m at e
of t h e tr ai n er’s t ar g et p oli c y λ ∗ gi v e n t h e f e e d b a c k t h at t h e us er h as pr o vi d e d; t h at is, it
c o m p ut es

ar g m a x
λ

p (h 1 ...t |λ
∗ = λ),

w h er e h t i s t h e tr ai ni n g hist or y of a cti o ns, o bs er v ati o ns, a n d f e e d b a c k. If a us er pr o vi d es
m ulti pl e f e e d b a c ks d uri n g a n e pis o d e, S A B L o nl y c o nsi d ers t h e  m ost r e c e nt, all o wi n g a us er
t o c orr e ct a  mist a k e n f e e d b a c k.  Al g orit h m 1 is a n o utli n e of S A B L.  N ot e t h at o nl y t h e c urr e nt
li k eli h o o d distri b uti o n is n e e d e d t o c o m p ut e t h e li k eli h o o d gi v e n a n e w e pis o d e, a n d t h er ef or e
t h e f ull tr ai ni n g hist or y d o es n ot n e e d t o b e c o nsi d er e d  w h e n u p d ati n g t h e p oli c y pr o b a biliti es.

S A B L r e q uir es t h at  w e s p e cif y t h e tr ai n er’s str at e g y b ef or e l e ar ni n g, b ut i n pr a cti c e  w e
ar e u nli k el y t o k n o w  w h at t h at str at e g y  will b e, as tr ai n ers  m a y us e a v ari et y of str at e gi es.
S p e cif yi n g a n i n c orr e ct str at e g y c a n s e v er el y d e gr a d e t h e p erf or m a n c e of t h e al g orit h m. F or
e x a m pl e, if t h e tr ai n er f oll o ws a r e w ar d-f o c us e d str at e g y,  w hil e t h e a g e nt ass u m es t h at t h e y
f oll o w a p u nis h m e nt-f o c us e d str at e g y, t h e n t h e a g e nt  will i nt er pr et t h e l a c k of f e e d b a c k as
i n di c ati n g t h at t h e pr e vi o us a cti o n  w as c orr e ct,  w h e n i n r e alit y t h e l a c k of f e e d b a c k  m e a ns
t h e pr e vi o us a cti o n  w as i n c orr e ct.

S p e cif yi n g t h at t h e tr ai n er’s str at e g y is b al a n c e d, t h at is, μ + = μ − ,  will c a us e t h e a g e nt t o
i g n or e e pis o d es  w h er e n o f e e d b a c k is gi v e n, a n d  w hil e it  will pr e v e nt t h e a g e nt fr o m h ar mf ull y
misi nt er pr eti n g t h e l a c k of f e e d b a c k, it  will als o pr e v e nt it fr o m g ai ni n g a n y k n o wl e d g e fr o m
s u c h e pis o d es. I n t h e n e xt s e cti o n  w e  will e xt e n d S A B L t o all o w it t o i nf er t h e tr ai n er’s
str at e g y o nli n e b as e d o n t h e tr ai ni n g hist or y.
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Al g o rit h m 2 T h e I- S A B L al g orit h m.  T h e E M u p d at e ( λ, h ) f u n cti o n c o m p ut es a n e w p oli c y
a c c or di n g t o  E q. 4 .

λ ← r a n d o m P oli c y ()
h ←
t ← 0
w hil e us er h as n ot t er mi n at e d l e ar ni n g d o

o t ← o b s er v e W orl d ()
a t ← λ( o t )
t a k e A cti o n(a t )
ft ← r e c ei v e F e e d b a c k ()
h ← h 0 , . . . h t− 1 , (o , a , f )
λ ← r a n d o m P oli c y ()
r e p e at

λ ← λ
λ ← E M u p d at e ( λ, h )

u ntil λ = = λ
t ← t + 1

e n d  w hil e

4. 2 S A B L f or u n k n o w n str at e gi es: i nf erri n g- S A B L

W hil e S A B L  will p erf or m  w ell  w h e n it k n o ws t h e tr ai n er’s μ + a n d μ − p ar a m et ers, i n pr a cti c e
t h e tr ai n er’s str at e g y  will li k el y b e u n k n o w n. If, h o w e v er, t h e l e ar n er k n o ws fr o m e x pli cit
f e e d b a c k t h e c orr e ct a cti o n f or s o m e o bs er v ati o ns, it c a n i nf er t h e str at e g y b y l o o ki n g at
t h e hist or y of f e e d b a c k f or t h os e o bs er v ati o ns. F or e x a m pl e, if  m or e e x pli cit f e e d b a c k is
gi v e n f or c orr e ct a cti o ns t h a n i n c orr e ct o n es, t h e n t h e str at e g y is li k el y r e w ar d-f o c us e d.
U n d er S A B L’s pr o b a bilisti c  m o d el  w e c a n tr e at t h e u n k n o w n μ v al u es r e pr es e nti n g t h e
tr ai n er’s str at e g y as hi d d e n p ar a m et ers, a n d c a n  m ar gi n ali z e o v er p ossi bl e str at e gi es t o c o m-
p ut e t h e li k eli h o o d of a p ossi bl e t ar g et p oli c y λ . I nf erri n g- S A B L, or I- S A B L, fi n ds a  m a xi-
m u m li k eli h o o d esti m at e of t h e t ar g et p oli c y, gi v e n t h e tr ai ni n g hist or y. I- S A B L att e m pts t o
fi n d

ar g m a x
λ s ∈ S

p (h 1 ...t , s |λ ∗ = λ),

w h er e S is t h e s et of p ossi bl e tr ai ni n g str at e gi es (μ + , μ− v al u es), p (s ) is u nif or m f or all
s ∈ S , a n d h 1 ...t i s t h e tr ai ni n g hist or y u p t o t h e c urr e nt ti m e t.

I n s o m e d o m ai ns it  will b e p ossi bl e t o r estri ct t h e s p a c e of p ossi bl e p oli ci es s u c h t h at t h e
m ar gi n al li k eli h o o d of e a c h p oli c y c a n b e e x pli citl y c o m p ut e d. I n t h e g e n er al c as e, h o w e v er,
t h e s p a c e of p ossi bl e p oli ci es  will b e e x p o n e nti al i n t h e n u m b er of o bs er v ati o ns, a n d s o
al g orit h ms f or a p pr o xi m at e i nf er e n c e  m a y b e n e e d e d. I n t his  w or k  w e us e t h e  E x p e ct ati o n
M a xi mi z ati o n [ 7 ] al g orit h m i n s u c h c as es t o c o m p ut e a  m a xi m u m li k eli h o o d esti m at e of t h e
t ar g et p oli c y, a n d tr e at t h e u n k n o w n μ + a n d μ − p ar a m et ers as c o nti n u o us, hi d d e n v ari a bl es
r a n gi n g fr o m 0 t o 1.  T h e it h  E M u p d at e st e p is t h e n

λ i+ 1 = ar g m a x
λ ∈ P

1

0

1

0
p ( μ+ , μ− |h , λi ) l n p (h , μ+ , μ− |λ) d μ + d μ −

= ar g m a x
λ ∈ P

1

0

1

0
p ( μ+ , μ− |h , λi ) l n p (h |μ + , μ− , λ) p ( μ+ , μ− |λ) d μ + d μ − ,
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w h er e λ i i s t h e c urr e nt esti m at e of t h e p oli c y a n d λ i+ 1 i s t h e n e w esti m at e of t h e p oli c y.
As t h e μ p ar a m et ers ar e c o nti n u o us,  w e i nt e gr at e o v er t h eir r a n g e,  w hi c h is t h e u nit

s q u ar e.  B e c a us e  w e h a v e n o pri or k n o wl e d g e t h at o n e str at e g y is  m or e li k el y t h a n a n ot h er,
w e ass u m e t h at all p ossi bl e c o m bi n ati o ns of μ p ar a m et ers ar e e q u all y pr o b a bl e, a n d i n d e-
p e n d e nt of t h e d esir e d p oli c y ( wit h e n o u g h d at a t h e  E M al g orit h m s h o ul d esti m at e a si m-
il ar distri b uti o n o v er v al u es r e g ar dl ess of o ur i niti al ass u m pti o n).  T h e pr o b a bilit y d e n-
sit y f u n cti o n o v er t h es e p ar a m et ers p ( μ+ , μ− |λ) = 1, a n d c a n t h er ef or e b e di vi d e d o ut
l e a vi n g

= ar g m a x
λ ∈ P

1

0

1

0
p ( μ+ , μ− |h , λi ) l n p (h |μ + , μ− , λ)d μ + d μ −

= ar g m a x
λ ∈ P

1

0

1

0

p (h |μ + , μ− , λi ) p ( μ+ , μ− |λ i )

p (h |λ i )
l n p (h |μ + , μ− , λ)d μ + d μ −

= ar g m a x
λ ∈ P

1

0

1

0

p (h |μ + , μ− , λi )

p (h |λ n )
l n p (h |μ + , μ− , λ)d μ + d μ −

= ar g m a x
λ ∈ P

1

0

1

0
p (h |μ + , μ− , λi ) l n p (h |μ + , μ− , λ)d μ + d μ − ,

wit h t h e  m ar gi n al pr o b a bilit y p (h |λ n ) r e m o v e d as a c o nst a nt.  C o m p uti n g t his q u a ntit y is
still c o m p ut ati o n all y i ntr a ct a bl e, as it  m ust b e o pti mi z e d o v er all p ossi bl e v al u es of λ . If t h e
tr ai ni n g hist or y h is r e pl a c e d b y hist ori es h o , f or all o bs er v ati o ns o ∈ O , t h e n t h e u p d at e
b e c o m es

ar g m a x
λ ∈ P

1

0

1

0
p (h |μ + , μ− , λi ) l n

o ∈ O

p (h o |μ + , μ− , λ(o )))d μ + d μ −

= ar g m a x
λ ∈ P

1

0

1

0
p (h |μ + , μ− , λi )

o ∈ O

l n( p (h o |μ + , μ− , λ(o )))d μ + d μ −

= ar g m a x
λ ∈ P o ∈ O

1

0

1

0
p (h |μ + , μ− , λi ) l n( p (h o |μ + , μ− , λ(o )))d μ + d μ − .

Wit h t his f or m,  w e c a n n o w o pti mi z e e a c h o bs er v ati o n- a cti o n  m a p pi n g i n di vi d u all y, f or
e a c h o ∈ O .  T h e l o g arit h mi c t er m c a n b e f urt h er si m pli fi e d b y s plitti n g u p t h e hist or y h o i nt o
e pis o d es  wit h p ositi v e, h o ,+ , a n d n e g ati v e, h o ,− f e e d b a c k, as  w ell as, h o ,0 , e pis o d es  wit h o ut
f e e d b a c k:

l n p (h o |a , μ+ , μ− )

= l n p (h o ,+ |a , μ+ , μ− ) p (h o ,− |a , μ+ , μ− ) p (h o ,0 |a , μ+ , μ− )

= l n p (h o ,+ |a , μ+ , μ− ) + l n p (h o ,− |a , μ+ , μ− ) + l n p (h o ,0 |a , μ+ , μ− ).

L et |h o ,+ | b e t h e t ot al n u m b er of e pis o d es  w h er e p ositi v e f e e d b a c k  w as r e c ei v e d f oll o wi n g
o bs er v ati o n o , a n d l et |h o ,+

a | b e t h e n u m b er of e pis o d es  wit h p ositi v e f e e d b a c k gi v e n f or a cti o n
a aft er o bs er v ati o n o . P ut diff er e ntl y, |h o ,+

a | i s t h e t ot al n u m b er of e pis o d es  wit h o bs er v ati o n
o w h er e t h e c orr e ct a cti o n  w as t a k e n, a n d p ositi v e f e e d b a c k  w as gi v e n, ass u mi n g t h at a is i n
f a ct t h e c orr e ct a cti o n f or o . F urt h er, l et t h e v al u es |h o ,− | a n d |h o ,−

a , | b e d e fi n e d a n al o g o usl y,
b ut f or n e g ati v e f e e d b a c k.  We c a n t h e n si m plif y t h e first t er m as
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l n p (h o ,+ |a , μ+ , μ− )

= l n ((1 − )(1 − μ + ))|h o ,+
a |( (1 − μ + ))|h o ,+ | −|h o ,+

a |

= l n
(1 − ) |h o ,+

a |

( (1 − μ + ))|h o ,+ |

= | h o ,+
a | l n

(1 − )
+ | h o ,+ | l n (1 − μ + ).

We c a n si mil arl y si m plif y t h e s e c o n d t er m of t h e s u m m ati o n as

l n p (h o ,− |a , μ+ , μ− ) = | h o ,−
a | l n

( )

1 −
+ | h o ,− | l n(1 − )(1 − μ + ).

T h e t er ms |h o ,+ | l n (1 − μ + ) a n d |h o ,− | l n(1 − )(1 − μ + ) c a n b e dr o p p e d fr o m t h e  m a x-
i mi z ati o n as t h e y d o n ot d e p e n d o n a , a n d t h e r e m ai ni n g t er ms c a n b e p ull e d o ut of t h e
i nt e gr ati o n, as t h e y d o n ot d e p e n d o n t h e μ p ar a m et ers.

T h e fi n al t er m,  w hi c h d o es d e p e n d o n t h e μ p ar a m et ers, si m pli fi es t o

l n p (h o ,0 |a , μ+ , μ− )

= l n ((1 − ) μ+ + μ − )|h o ,0
a |( μ + + (1 − ) μ− )|h o ,0 | −|h o ,0

a |

= | h o ,0
a | l n

(1 − ) μ+ + μ −

μ + + (1 − ) μ−
+ | h o ,0 | l n( μ + + (1 − ) μ− ),

w h er e |h o ,0 | a n d |h o ,0
a | r e pr es e nt t h e n u m b er of e pis o d es  w h er e n o f e e d b a c k  w as gi v e n aft er

o bs er v ati o n o , a n d t h e n u m b er of e pis o d es  w h er e n o f e e d b a c k  w as gi v e n f or a cti o n a t a k e n
aft er o bs er v ati o n o .  O n c e a g ai n t h e s e c o n d t er m d o es n ot d e p e n d o n t h e c orr e ct a cti o n a n d
s o c a n b e r e m o v e d fr o m t h e o pti mi z ati o n.

T h er ef or e, t h e  E M u p d at e c a n b e si m pli fi e d t o  m a xi mi zi n g t h e f oll o wi n g t er m f or a p oli c y’s
a cti o n s e p ar at el y f or e a c h o bs er v ati o n o :

λ i+ 1 (o ) = ar g m a x
a ∈ A

α ( |h o ,+
a | − |h o ,−

a |) + β |h o ,0
a | , ( 4)

w h er e  w e d e fi n e v al u es

α = l n
(1 − ) 1

0

1

0
p (h |μ + , μ− , λi )d μ + d μ − , a n d

β =
1

0

1

0
p (h |μ + , μ− , λi ) l n

(1 − ) μ+ + μ −

μ + + (1 − ) μ−
d μ + d μ − ,

as si m pli fi c ati o ns of t h e e x p e ct ati o n st e p,  w hi c h c a n b e c o m p ut e d o n c e f or e a c h  E M u p d at e.
Al g orit h m 2 gi v es a n o utli n e of t h e f ull I- S A B L l e ar ni n g al g orit h m.

5  Us e r st u di es

As p art of t his  w or k  w e c o n d u ct e d t w o s ets of o nli n e us er st u di es ( o n e s et  wit h v ol u n-
t e ers r e cr uit e d vi a e m ail a n d a n ot h er usi n g  A m a z o n  M e c h a ni c al  T ur k) t h at a d dr ess e d t w o
m ai n q u esti o ns. First,  w e  w a nt e d t o u n d erst a n d h o w us ers pr o vi d e f e e d b a c k ( or c h o os e n ot t o
pr o vi d e f e e d b a c k),  w h e n t e a c hi n g virt u al a g e nts. S e c o n d,  w e  w a nt e d t o e v al u at e t h e eff e cti v e-
n ess of t h e S A B L a n d I- S A B L l e ar ni n g al g orit h ms a g ai nst al g orit h ms b as e d o n a n u m eri c al
i nt er pr et ati o n of r e w ar d.
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Fig. 1 A screenshot of the
study interface. Additional
buttons that begin and end
training have been cropped out

In each study, participants trained a virtual agent to move towards objects as they
approached from different sides of the screen. In our volunteer studies, this agent was repre-
sented by a sprite of a dog and the object to be approached was represented as a rat, which
would run away when the dog moved towards it. The Mechanical Turk studies also used
these images in some experiments, but in addition used other visual representations to gauge
the effect of the agent’s appearance on the user’s behavior. The learning task used in all
of the user studies could be described as a contextual bandit domain [20], where the agent
can observe the state of the world, and take some action, but its actions have no effect on
the probability of subsequent states of the world occurring, only on the probability of the
immediate feedback.

As we are interested in how the participants’ backgrounds affected their training strategies
(particularly their background with dog training), we had participants ll out surveys before
they began the study. In these surveys the participants were asked to indicate their age,
gender, education, history with dog ownership, experience in training dogs, and with which
dog-training paradigms they were familiar (if any).

Before beginning training, users were taken through a tutorial, which rst animated
approaching objects and then instructed the user how to reward and punish the learner.
After the tutorial, the users began a series of training sessions; each session was performed
with a different virtual agent that learned from scratch. The user was told that each session
required that the agent be trained from scratch.

In our training task, the learning agent began at the center of the screen, and the objects
arrived once every two seconds from the edges of the screen. The objects came from three
points along each of the four edges, resulting in 12 possible observations. When an object
appeared, the agent moved from the center towards one of the edges. If the learner moved
towards the edge from which the object was coming, that object was chased away. If the
learner ran to a different edge, the object entered the eld in the center and disappeared.
Figure 1 shows the agent and task environment with the dog and rat sprites used in most of
our user studies.

To train the learner to chase the objects away, users could provide reward, punishment,
or no feedback. Users signaled when training was complete by pressing a button. Data for a
training session was included only if it was terminated by the user signaling it was complete.

To get a better understanding of how users chose to train the agents, after each training
session participants were shown a textual input box, and were asked: “Please describe the
strategy you used when training the [agent] during the previous experiment. For example,
when did you provide reward/punishment or when did you decide to change the task or start
over (if appropriate)? Is there anything else you want to say about training the [agent]?”
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5.1 Volunteer studies

The rst set of studieswe conducted (the volunteer studies) focused on how training strategies
differed between users for a xed training task, and on how a user’s prior training experience
affected their choice of strategy. As such, the learning agent in these studies was represented
as a drawing of a dog, and the approaching object as a rat. In both the rst and second
studies, each training session used a different learning algorithm (in random order). The two
volunteer studies also evaluated the SABL and I-SABL learning algorithms developed as part
of this work, comparing them against two RL-based algorithms, M−0 and M+0 (discussed
in Sect. 7). Speci cally, M−0, M+0, and the SABL algorithm, were evaluated in one study,
while the SABL and I-SABL algorithms were evaluated in a second study.

Participants for the two volunteer studies (which we will refer to as volunteer study 1 and
volunteer study 2, respectively) were recruited from three different sources: (1) a senior-level
game design class at North Carolina State University (credit was offered for participation),
(2) the North Carolina State University computer science departmental mailing list, and
(3) two Internet communities focused on dog training (a Facebook group about positive-
reinforcement training and a Japanese dog forum). Although the recruiting sources were
the same for both volunteer studies, the distribution from each source was different since
recruitment was performed at different times.

5.2 Amazon mechanical turk studies

In another set of user studies, we considered how the training task itself, and the interface
provided to the trainer, would affect their choice of strategy. We were particularly interested
in whether the appearance of the agent would affect strategy choice, and whether feedback
from the agent to the user would affect that choice.

To ef ciently recruit a large number of participants, we ran this set of studies using the
Amazon Mechanical Turk system, which allowed us to present the studies to a large pool of
Mechanical Turk users, and to provide each of them with a small amount of compensation
for completing the study. Each study was de ned within Mechanical Turk as a Human
Intelligence Task, and participants were given a base compensation of $0.25, and were given
a bonus if the agent reached 90 % policy accuracy. We had a total of eight separate Human
Intelligence Tasks (which we will denote as AMT 1 through AMT 8) which were published
to Mechanical Turk. Each task had its own set of experimental conditions, and its own set of
participants, though it is possible that some users participated in more that one task. Table 2
summarizes the eight individual studies published through Mechanical Turk. It should be
noted that the learning algorithm used to control the agents in these studies was chosen at
random each time, and was either the balanced feedback version of the SABL, or the I-SABL
algorithm.

There were two main sets of conditions in the Mechanical Turk studies. AMT 1 through
AMT 3 looked at how changing the visual representation of the agent affected the choice of
strategy, the assumption being that users would be less likely to punish an agent that appeared
as a dog than they would an agent that appeared as an inanimate object, or as an animal
with less positive associations, such as a snake (see Fig. 2). The sprite of the approaching
object was also changed to be more appropriate given the agent’s sprite. The alternative sprite
combinations used for these studies are shown in Table 2. AMT1 switched randomly between
the dog/rat and robot/battery sprites, while AMT 2 tested only the snake/bird combination,
and AMT 3 used only the arrow/square combination. In AMT 1, 2 and 3 the participant
received a bonus of $0.25 for reaching 90 % policy accuracy.
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Table 2 Summary of Amazon Mechanical Turk studies, results of which are discussed in Sects. 6.2, 6.3 and
6.4

Study Sprite Condition Performance bonus No. participants

AMT 1 Dog/rat or robot/battery Agent appearance $0.25 162

AMT 2 Snake/bird Agent appearance $0.25 162

AMT 3 Arrow/square Agent appearance $0.25 120

AMT 4 Dog/rat Policy accuracy $0.25 30

AMT 5 Dog/rat Audible response $0.25 30

AMT 6 Dog/rat Increased bonus $0.75 30

AMT 7 Dog/rat Policy accuracy $0.75 30

AMT 8 Dog/rat Audible response $0.75 30

Fig. 2 Alternative sprite
combinations used in the
Mechanical Turk Studies, in
addition to being represented as a
dog, the agent could also have
been a robot, a snake, or an arrow

AMT 4 through AMT 8 looked at how feedback given by either the training interface or
the agent itself would affect the strategy used, and each used the dog/rat sprite combination.
In AMT 4 and AMT 7, the interface showed the user the percentage of the agent’s policy that
was correct at that moment. AMT 5 and AMT 8 had the agent give an audible cry when it
was punished.2 AMT 4 and 5 gave participants a bonus of $0.25 for reaching 90 % accuracy,
while AMT 6, 7 and 8 gave bonus of $0.75. AMT 6 gave no special feedback to the user, and
was meant to evaluate the effect of increasing the bonus to $0.75.

6 Analysis of training strategies used in practice

Our main hypothesis in conducting these studies was that human trainers follow a variety of
strategieswhen teaching behaviors using feedback. As such, we characterized the distribution
of different training strategies, and the factors that in uenced that distribution.

We used our probabilistic model of the training process to categorize the strategies that
participants in our studies followed. As discussed previously in Sect. 3.1, we group strategies
into four categories by the conditions under which they do and do not provide explicit feed-

2 Though users were instructed to enable their computer speakers, we have no way of knowing whether the
participant could actually hear the dog cry.
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Table 3 Breakdown of strategies
used in AMT 1, 2 and 3 when
training an agent appearing as a
dog, robot, snake or arrow

Agent Balanced
feedback

Reward-
focused

Punishment-
focused

Inactive

Dog 151 25 1 1

Robot 188 21 0 4

Snake 64 7 2 3

Arrow 43 6 1 2

back (balanced feedback, reward-focused, punishment-focused and inactive). Speci cally,
we estimated the μ+ and μ− parameters used for each training session by computing the
fraction of correct and incorrect actions that did not receive explicit feedback. The strategy
for a session was classi ed as balanced if both μ+ and μ− were less than 1

2 (recall that low
μ+ and μ− values correspond to frequent explicit feedback). If μ+ was less than 1

2 while
μ− was greater than 1

2 , the strategy was classi ed as reward-focused, while if the opposite
case was true the strategy was classi ed as punishment-focused. The strategy was classi ed
as inactive if both μ+ and μ− were greater that 1

2 .
We rst consider the results of volunteer studies 1 and 2. In those studies we are primarily

interested in the overall distribution of strategies used, as well as how the user’s background
in uenced their choice of strategy. We only consider data from the 105 users (between the
two studies) who completed at least one training session. Table 1 in Sect. 3.1 summarizes
the distribution of training strategies from volunteer studies 1 and 2.

Recall that some participants for these studies were explicitly recruited due to their expe-
rience in training dogs and they trained a learner depicted with a dog sprite (Fig. 1). Overall,
the dominant strategies in these studies were reward-focused (frequent rewards, few punish-
ments) and balanced feedback (frequent rewards and punishments). The least used strategy
was inactive, which is reassuring, as the use of such a strategy could indicate that users were
confused about the task or interface, or were not fully engaged with the task.

We expected the balanced feedback strategy to be common, because the strategy represents
providing as much information to the learner as possible. As one participant described it in
the post-experiment survey, “I just punished the dog if they went to the wrong side and
rewarded them when they went to the right side.” We also expected to see many users using
reward-focused strategies, since that is a common dog-training paradigm. One participant
explained, “I tried to Reward only. Rewarded when the dog was moving or hadmoved toward
the rat, and provided no opportunity for Reward when the dog moved away from the rat.”

Table 3 summarizes the distribution of strategies used in the rst three Mechanical Turk
studies (AMT1, 2 and3).Weonly report data from training sessionswhere at least 50%policy
accuracy was achieved.3 In this study, unlike the rst two, balanced feedback strategies were
much more common than reward-focused strategies. However, reward-focused strategies
were still common, and still occurred much more frequently than punishment-focused or
inactive strategies.

We note that a few participants changed strategies during training sessions. We divided
each experiment at its temporal midpoint, and classi ed the strategy used for the rst half
of the experiment, and that used for the second half. Table 4 shows how users changed
strategies over time in volunteer studies 1 and 2. Overall, changing strategy was uncommon,
with 84.7 % of training sessions in study 1 following a single strategy. There were however, a

3 We exclude more data in the Mechanical Turk studies to remove participants who do the minimum amount
of work to receive their compensation.
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Table 4 The number of participants beginning a training session using one strategy (rows) and ending it using
another (columns). Entries on the diagonal indicate that no change occurred

Ending strategy

Beginning Strategy Balanced
feedback

Reward-
focused

Punishment-
focused

Inactive

(a) Volunteer study 1

Balanced feedback 65 4 2 0

Reward-focused 10 52 1 1

Punishment-focused 2 1 4 1

Inactive 0 0 0 1

(b) Volunteer study 2

Balanced feedback 17 2 0 0

Reward-focused 2 59 0 1

Punishment-focused 0 0 0 0

Inactive 0 1 1 0

number of cases where users switched from a reward-focused strategy to a balanced feedback
strategy, which occurred in 6.9 % of training sessions in study 1. This change may have been
an attempt by the users to preserve the desired behavior once it had been learned, that is, once
the agent was taking mostly correct actions, incorrect actions were singled out for explicit
punishment.

Our probabilistic model does not explicitly account for changes in strategy, though it could
be extended to do so. While existing work has addressed trainers changing their strategies by
actively encouraging users to give certain types of feedback [19], it may be more effective
to integrate the notion of strategy change with an overall model of trainer feedback, such as
the one presented here.

6.1 Effects of dog-training experience

As we are interested in the degree to which a participant’s experience with training dogs
in uenced their strategy, we asked each user to rate their level of experience in dog training
on a four-point scale from “None” to “I am an Expert.” Many participants had no experience
training dogs, and those that did varied in their degree of experience.

To visualize these results, we organize the data into a contingency table and depict it as a
residual mosaic plot (see Fig. 3a). There are a few important things to note about such plots.
The data is organized into boxes, with one column of boxes for each value of one of the
categorical variables. The order of the boxes within each column follows the set of values of
the other categorical variable. The area of a box in the plot indicates the number of responses
in that category. Thewidth of each box represents, in aggregate, the probability that a response
will fall into that column, regardless of which row it is in, e.g., Pr(Experience = some).

The height of a box indicates the amount of data in that column when the value of the row
is considered, e.g., Pr(Strategy = reward − focused|Experience = none). Thus, the more
asymmetric any box is, the more it deviates from the expected value; tall thin rectangles
indicate more data in that entry than expected and short wide rectangles indicate fewer data
in that entry than expected.

Additionally, the color of an entry indicates whether or not the rectangular shape of an
entry represents a signi cant deviation from the expected value. A shaded entry means that
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Fig. 3 Mosaic plots (generated with the R language) with Pearson residuals for strategies in the volunteer
studies, grouped by dog-training experience (Note that boxeswith solid borders indicate a deviation above the
expected value, while boxes with dotted borders indicate a deviation below the expected value). Users with
no experience were more likely to use balanced-feedback strategy, users with some experience were more
likely to use a reward-focused strategy. For volunteer study 1, differences were 2–4 standard deviations from
expected (signi cant with p < 0.05) a Volunteer study 1 b Volunteer study 2
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the value that box represents is more than two standard deviations above (or below) the
expected value, and is therefore signi cant with p < 0.05. If the border of the cell is solid,
then the deviation is above the expected value, if it is dashed, it is below expected.

Figure 3a shows the relationship between dog-training experience and the employed feed-
back strategy in a mosaic plot, for participants in volunteer study 1. As a common approach
to dog training is to only use positive feedback, we expected that users with dog-training
experience would be more likely to use reward-focused strategies than those without expe-
rience.

Indeed, in volunteer study 1, we found that the more dog-training experience a user had,
the more likely they were to use a reward-focused strategy. This relationship was found to
be statistically signi cant at the 95 % con dence level. However, this relationship did not
appear as strong in volunteer study 2 in which users with at least some experience were very
likely to use reward-focused strategies (Fig. 3b). This difference likely re ects differences in
the distribution of participants between the two studies, with the second study having only
four participants with no training experience.

Both volunteer studies 1 and 2 speci cally recruited participants with dog-training experi-
ence, and that choice almost certainly affected the observed frequency of different strategies.
The Mechanical Turk studies, however, should have no bias towards users with training
experience.

6.2 Effect of agent appearance

The Mechanical Turk studies focused primarily on how different aspects of the training task
and the interface would affect the training strategies used. AMT 1, 2 and 3 considered the
question of whether the appearance of the agent would affect the distribution of strategies
used, either because users believed that an agent resembling a dog would respond better to
strategies that are effective with real dogs, or because the appearance of an animal made
users more averse to giving punishment. Recall that the Mechanical Turk studies asked the
user to teach the same behavior as in the volunteer studies, but varied the sprites between a
dog/rat, robot/battery, snake/bird, or arrow/box.

As shown in Table 3, the distribution of strategies in AMT 1, 2 and 3 was relatively
insensitive to the agent’s appearance. Fisher’s exact test shows that the number of times each
of the four strategies was used was not signi cantly different (p > 0.21) between subjects
training the dog and those training the robot. Similarly, we did not see differences in strategies
between the snake and the arrow (p = 0.10).

Despite a lack of statistically signi cant ndings, there is some weak evidence that the
learning agent’s sprite did in uence trainers’ choices of strategies. Consider Fig. 4, which
shows the distribution of dog-training experience for those trainers that used a reward-focused
strategy, grouped by sprite. What is interesting to note is that participants with dog training
experience used reward-focused strategies in roughly equal proportion when training the
dog and the robot; however, for participants without dog training experience, it appears a
higher percentage used the reward-focused strategy on the dog when compared to the robot.
One plausible explanation is that empathy toward the dog caused users to avoid explicit
punishment, even if they were unfamiliar with dog-training techniques.

6.3 Effect of feedback from the agent

We also consider how having the agent or the training interface provide some feedback to the
trainer might in uence their choice of strategy. AMT 4 and 5, and AMT 7 and 8, looked at the
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Fig. 4 The distribution of participants in AMT 1, 2 and 3 who used a reward-focused strategy, based on their
experience with dog training, grouped by the sprite they were training

Table 5 Breakdown of strategies used when training a dog with policy-accuracy displayed and a dog with
sound, as well as when training a dog with the $0.25 performance bonus and with the increased $0.75 bonus

Experiment Performance
bonus

Training
conditions

Balanced
feedback

Reward-
focused

Punishment-
focused

Inactive

AMT 1 $0.25 Base 151 (85 %) 25 (14 %) 1 (.5 %) 1 (.5 %)

AMT 4 $0.25 Policy accuracy 32 (84 %) 3 (8 %) 1 (2.7 %) 2 (5.3 %)

AMT 5 $0.25 Audible response 18 (72 %) 6 (24 %) 0 (0 %) 1 (4 %)

AMT 6 $0.75 Base 46 (88 %) 5 (10 %) 0 (0 %) 1 (2 %)

AMT 7 $0.75 Policy accuracy 38 (79 %) 7 (15 %) 1 (2 %) 2 (4 %)

AMT 8 $0.75 Audible response 33 (72 %) 11 (24 %) 1 (2 %) 1 (2 %)

effects of providing feedback to the trainer in various forms. AMT 4 and AMT 7 displayed
the current percentage of the learner’s policy that was correct, while AMT 5 and AMT 8
had the dog give an audible cry in response to punishment. As AMT 7 and 8 increased the
participants performance bonus to $0.75 from $0.25, we consider AMT 6 to be a baseline
against which to compare AMT 7 and 8, while AMT 1with the dog sprite would be a baseline
for AMT 4 and5, as it only had a $0.25 performance bonus.

Table 5 summarizes the frequency of strategies used by the human trainers in these studies.
The results are in line with the other Mechanical Turk studies, with the dominant training
strategy being balanced feedback, followed in popularity by reward-focused. Fisher’s exact
test shows that the number of times each of the four strategies was used was not signi cantly
signi cant (p = 0.25) between AMT 4 and AMT 5, nor were the differences between AMT
6, 7 and 8 signi cant (p = 0.35). We do note however that the ratio of balanced feedback
to reward-focused strategies is smallest (three to one) for experiments where the dog gave
an audible cry in response to punishment, which suggests that more participants chose a
reward-focused strategy when the dog gave such a response than when it did not. This would
be in line with our expectation, since the audible cry could lead human trainers to empathize
with the learner, and so give fewer punishments during training.
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Fi g. 5 T h e distri b uti o n of p arti ci p a nts i n  A M T 6 – 8  w h o us e d a r e w ar d-f o c us e d str at e g y b as e d o n t h eir
e x p eri e n c e  wit h d o g tr ai ni n g, gr o u p e d b y diff er e nt tr ai ni n g c o n diti o ns

Fi g ur e 5 s h o ws t h e distri b uti o n of p arti ci p a nts  w h o us e d a r e w ar d-f o c us e d str at e g y b as e d
o n t h eir e x p eri e n c e  wit h d o g tr ai ni n g. Fis h er’s e x a ct t est s h o ws t h at t h e diff er e n c e  w as n ot
st atisti c all y si g ni fi c a nt ( p = 1).  We still fi n d t h at  m or e tr ai n ers  wit h o ut a n y d o g tr ai ni n g
e x p eri e n c e c h os e t o us e r e w ar d-f o c us e d str at e gi es i n t h e d o g  wit h p oli c y a c c ur a c y a n d d o g
wit h a u di bl e r es p o ns e tr ai ni n g c o n diti o ns c o m p ar e d a g ai nst t h e c o ntr ol c o n diti o n.  We c a n
t h er ef or e c o n cl u d e t h at diff er e nt tr ai ni n g f a ct ors di d i n fl u e n c e  w or k ers’ c h oi c es of tr ai ni n g
str at e gi es.  T h at  m e a ns, if t h e a c c ur a c y of t h e l e ar n e d p oli c y  w as s h o w n t o t h e tr ai n er, or if
t h e d o g g a v e a n a u di bl e cr y aft er b ei n g p u nis h e d, h u m a n tr ai n ers  w er e  m or e li k el y t o us e
r e w ar d-f o c us e d.

6. 4  Tr ai n er  mist a k es

O n e of t h e  m ai n ass u m pti o ns of o ur pr o b a bilisti c  m o d el is t h at tr ai n ers c a n  m a k e  mist a k es
w h e n pr o vi di n g f e e d b a c k (t h e p ar a m et er, dis c uss e d i n S e ct. 3. 2 ).  T h e r es ults of b ot h t h e
v ol u nt e er st u di es a n d t h e  M e c h a ni c al  T ur k st u di es d e m o nstr at e t h at tr ai n er err ors ar e c o m m o n,
a n d t h at a n y a p pr o a c h t o l e ar ni n g fr o m f e e d b a c k  m ust t h er ef or e b e a bl e t o r e c o v er fr o m s u c h
err ors.

N ot e t h at si n c e  w e c a n n ot k n o w if a us er  m a d e a  mist a k e f or a cti o ns t h at di d n ot r e c ei v e
f e e d b a c k,  w e c a n o nl y esti m at e fr o m c as es i n  w hi c h e x pli cit f e e d b a c k is pr o vi d e d.  We
esti m at e d t h e a v er a g e f or p arti ci p a nts i n v ol u nt e er st u di es 1 a n d 2 c o m bi n e d t o b e 0.0 8 5
o n a 0 t o 1 pr o b a bilit y s c al e. I n  A M T 1,  w h er e a g e nts  w er e r e pr es e nt e d as b ot h d o gs a n d as
r o b ots, t h e esti m at e d a v er a g e w as 0 .0 3 4.

T h e c o m m e nts  m a d e b y s o m e of t h e p arti ci p a nts s u g g est p ossi bl e s o ur c es of err or.  O n e
p arti ci p a nt e x pl ai n e d, “... i [si c] k e pt g etti n g  mi x e d u p at first a n d hitti n g t h e  wr o n g b utt o ns... ”,
s u g g esti n g t h at err or c o ul d b e r e d u c e d  wit h a cl e ar er i nt erf a c e d esi g n a n d  m or e us er pr a cti c e.
A n ot h er us er c o m m e nt e d, “ At first it g ot fr ustr ati n g b e c a us e  m y ti mi n g  w as off o n t h e r e w ar d
a n d p u nis h m e nt.  T h at d o es n’t h el p t h e d o g a n d t h e y b e c o m e afr ai d a n d st a y a w a y b e c a us e
t h e y ar e c o nf us e d. ”  O ur  m o d el d o es n ot c urr e ntl y a c c o u nt f or err ors i n t h e ti mi n g of f e e d b a c k.
T his pr o bl e m, h o w e v er,  m a y b e  miti g at e d b y t a ki n g t h e  w ei g ht e d a v er a g e of f e e d b a c k o v er
a l o n g er ti m e  wi n d o w, as  w as d o n e i n s o m e r el at e d  w or k [ 1 5 ].
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7 Performance of SABL and I-SABL

In addition to exploring the distribution of trainer strategies, the two volunteer studies were
used to evaluate the performance of the SABL and I-SABL algorithms. In addition to these
studies, we also conducted experiments using SABL and I-SABL with simulated trainers
that generated feedback according to our probabilistic model. The results in this section will
show that learning the trainer’s strategy, and using that knowledge to interpret the lack of
feedback, can improve learning performance, at least when a large number of users follow
reward-focused training strategies.

Though the results presented in Sect. 6 show that balanced feedback training strategies
were the most common overall (except in volunteer study 2), there are a number of reasons to
believe that algorithmswhich explicitly consider trainer strategywould be effectivewith users
who do not use such a strategy as frequently. For one, while balanced strategies were the most
common, we did observe a signi cant number of users following reward-focused strategies,
including in the Mechanical Turk studies. As the simulated trainer experiments will show,
SABL (assuming a reward-focused strategy) and I-SABL do not perform signi cantly worse
than SABL (assuming a balanced feedback strategy) when the trainer is actually following
a balanced feedback strategy. Therefore, we argue that SABL and I-SABL can improve
performance for users following reward-focused strategies without signi cantly impacting
performance for users following balanced feedback strategies. In addition, because of theway
we classify strategies as balanced-feedback versus reward-focused or punishment-focused,
it is still possible for a user following a balanced feedback strategy to have some bias towards
providing implicit feedback for correct or incorrect actions (if for example they always
give explicit feedback for incorrect actions, but sometimes fail to give feedback for correct
actions), and so those users may still bene t from the SABL/I-SABL algorithms.

7.1 Reward based algorithms, M−0 and M+0

To evaluate the SABL and I-SABL algorithms, we compare them against two algorithms
(M−0 andM+0) which are meant to be representative of algorithms from the literature which
treat human feedback as being representative of numeric reward. M−0 and M+0 both map
each feedback to a numeric reward value, +1 for positive feedback, and −1 for negative
feedback. Both algorithms maintain a table containing the average reward value received for
observation/action pair with a value of zero for any state action pair that has not yet been
encountered during learning. Unlike SABL and I-SABL, M−0 and M+0 use the cumulative
value of all feedback given during an episode. Both algorithms take the action which has the
highest average reward of all actions for the current state. M−0 and M+0 differ in how they
handle cases where no feedback is given. M−0 is designed to be most similar to the TAMER
framework [17] and ignores episodes without feedback, making no changes to its value esti-
mates in that case. M+0 is designed to be similar to the COBOT system [11] in how it handles
episodes without feedback, treating no feedback as a reward value of zero. Therefore, with
M+0, value estimates for actions will return to zero after enough episodes with no feedback.

As M−0 ignores episodes without feedback, there is no way for it to interpret the lack
of feedback using knowledge of the trainers strategy. M+0 could, however, be modi ed to
learn from the lack of feedback, by assigning a positive or negative reward value to episodes
without feedback, depending on the trainer’s strategy. The M+0 algorithm would still behave
differently fromSABL, even if both assumed the same strategy. If, for example, both assumed
a punishment-focused strategy (and the trainer actually followed such a strategy), then M+0

should assign a positive reward value (one less that the value assigned to explicit positive
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feedback) to episodes without feedback. If, based on explicit feedback, both algorithms had
identi ed the correct action for a state, then their subsequent actions for that state would
yield little explicit feedback. After each episode without feedback, SABLwould increase the
estimated likelihood of the action being correct, while M+0 would move its reward estimate
for the action closer to the reward value associated with the lack of feedback. This could have
the effect of reducing that action’s reward estimate, and actually cause the agent to eventually
select a different action, which would be undesirable if the action is actually correct.

We do not, however, explore the possibility of using M+0 with strategy knowledge here,
and to our knowledge a similar approach has not been described in the literature. As stated
above, in these experiments we always assume that M+0 assigns a reward value of zero to
episodes without feedback.

7.2 User studies

Volunteer studies 1 and 2, in addition to evaluating the types of strategies used by human train-
ers, also evaluate the performance (in terms of the time required to learn the target policy) of
SABL and I-SABL, both against each other and against existing approaches. Volunteer study
1 compared SABL against M−0 and M+0, and had 126 users, of which 71 completed training
at least one learner. Volunteer study 2 compared I-SABL against SABL and had 43 users,
of which 26 completed training at least one learner. In both of these studies, the base SABL
learner assumed that the trainer followed a balanced feedback strategy, that is, μ+ = μ−.

Our performancemeasurewas the average number of steps it took each agent to reach each
of four criteria. Three of the criteria were when the learner’s estimate of the policy was 50, 75,
and 100 % correct. The fourth criterion was the number of steps before the user terminated
the experiment. Results from the rst user study show that learners using SABL tended to
outperform those using M−0 and M+0. Figure 6a shows the number of steps to reach each of
the four criteria. The bars for SABL are lower than their counterparts for the other algorithms,
showing that on average the SABL learner took fewer steps to reach the 75, 100 %, and the
user termination criteria. Unpaired two sample t-tests show that the differences between the
SABL learner and theM−0 andM+0 learners, for the 75, 100% and termination criteria, were
statistically signi cant (p < 0.05). In addition, a larger percentage of sessions using SABL
reached 50, 75, and 100%policy correctness than usingM−0 orM+0. Pearson’sχ2 tests show
that the differences between the number of times the SABL learner and the M−0 and M+0

learners reached the 100 % criteria were statistically signi cant (p < 0.01), with the SABL,
M−0 and M+0 learners reaching 100 % correctness 53, 17 and 19 % of the time respectively.

In the second study, we compared I-SABL against SABL using the same performance
criteria to test whether inferring trainers’ strategies improves learning performance. Figure 6b
shows the number of steps for each algorithm to reach the criteria. Of interest are the very
small (statistically insigni cant) differences between SABL and I-SABL for the 50 and
75 % policy correctness criteria. The difference becomes much larger at the 100 % and
user-selected termination criteria, where I-SABL reaches each criteria in signi cantly fewer
steps. This is expected, as improvements in learning performance for I-SABL will be most
pronounced when the agent has received enough feedback for some observations to infer
the trainer’s strategy. Unpaired t-tests show these performance differences are statistically
signi cant, with p = 0.01 for the 100 % and p < 0.05 for the termination criteria. A
larger percentage of sessions using I-SABL reached 50, 75, and 100 % policy correctness
before termination than using SABL. Pearson’s χ2 tests show that the differences between
the number of times the I-SABL learner and the SABL learner reached the 100 % criteria
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Fig. 6 Average number of episodes required to learn a policy that was correct for at least 50, 75, or 100 %
of observations, and until the participants terminated the session. (Asterisk indicates that differences were
statistically signi cant for that column) a First user study, comparing SABL, M_0 and M+0 b Second user
study, comparing SABL and I-SABL

were signi cant (p < 0.01), with the I-SABL learner reaching 100 % policy correctness
50 % of the time, and the SABL learner reaching it 23 % of the time, respectively.

We note that SABL took more episodes on average to learn in volunteer study 2 than it
did in volunteer study 1. We attribute this difference to the fact that users with dog training
experience, who were much more common in study 2 than in study 1, were more likely to
use a reward-focused training strategy. As the SABL algorithm assumed a balanced feedback
strategy, it ignored episodes without feedback, and so performed more poorly under reward-
focused strategies which provided fewer explicit feedbacks. This does however raise the
question of how the M−0 and M+0 algorithms would have performed in this study. As users
gave less explicit feedback in volunteer study 2, we suggest that M−0 and M+0 would have
suffered a similar reduction in performance as SABL, since they too cannot directly consider
trainer strategy (though M+0 does include episodes without feedback in its value estimate).
AsM−0 andM+0 were not evaluated in volunteer study 2, however, we cannot compare their
performance to that of SABL in that study, nor can we directly compare their performance
to the performance of I-SABL.
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tr ai n er' s m u-

I- S A B L

S A B L wit h m u + = 0. 1, m u- = 0. 1

Fi g. 7 P erf or m a n c e of I- S A B L a n d S A B L ( μ − = μ + = 0 .1)  wit h si m ul at e d tr ai n ers.  T h e b ott o m x- a xis is t h e
tr ai n er’s μ + , t h e t o p x- a xis is μ − , a n d t h e y- a xis is t h e n u m b er of e pis o d es t o fi n d t h e t ar g et p oli c y.  As t h e
diff er e n c e b et w e e n μ + a n d μ − gr o ws, s o t o o d o es t h e p erf or m a n c e diff er e n c e b et w e e n S A B L a n d I- S A B L

7. 3 Si m ul at e d tr ai n er e x p eri m e nts

T o h el p u n d erst a n d h o w str at e g y i nf er e n c e all o ws I- S A B L t o o ut p erf or m S A B L,  w e r a n
s e v er al e x p eri m e nts  wit h si m ul at e d tr ai n ers i n c o nt e xt u al b a n dit d o m ai ns, c o m p ari n g I- S A B L
a g ai nst S A B L ( wit h S A B L’s μ + = μ − = 0 .1).  T h e si m ul at e d tr ai n er c h os e a t ar g et p oli c y at
r a n d o m, a n d g e n er at e d f e e d b a c k usi n g t h e s a m e pr o b a bilisti c  m o d el u n d erl yi n g S A B L a n d
I- S A B L.  We t est e d e a c h l e ar ni n g a g e nt o n t as ks c o nsisti n g of 2, 5, 1 0, 1 5 a n d 2 0 o bs er v ati o ns
a n d 2, 3, or 4 a cti o ns.  T h es e e x p eri m e nts  w er e c o n d u ct e d f or a r a n g e of p airs of μ + a n d
μ − v al u es f or t h e si m ul at e d tr ai n er.  E a c h μ p ar a m et er  w as v ari e d, fr o m 0 .0 t o 0 .8, s u c h t h at
μ − + μ + ≤ 1.  T h e tr ai n er’s err or r at e  w as = 0 .2,  m at c hi n g S A B L a n d I- S A B L’s ass u m e d v al u e.
L e ar n ers i n t h es e st u di es t o o k a cti o ns at r a n d o m b ut k e pt a n esti m at e of t h e  m ost li k el y p oli c y.

T h e r es ults s h o w t h at I- S A B L is a bl e t o t a k e a d v a nt a g e of i nf or m ati o n fr o m e pis o d es  w h er e
n o e x pli cit f e e d b a c k is gi v e n. Fi g ur e 7 s h o ws t w o c ur v es r e pr es e nti n g t h e n u m b er of st e ps it
t o o k t h e S A B L a n d I- S A B L a g e nts t o fi n d t h e c orr e ct p oli c y, f or v ar yi n g μ p ar a m et ers.  T h e
diff er e n c e i n p erf or m a n c e b et w e e n I- S A B L a n d S A B L i n cr e as es (i n f a v or of I- S A B L) as t h e
tr ai n er’s μ p ar a m et ers di v er g e fr o m t h e b al a n c e d str at e g y t h at S A B L ass u m es. I n a d diti o n,
I- S A B L c o m p ar es  w ell t o S A B L e v e n  w h e n t h e tr ai n er f oll o ws a b al a n c e d str at e g y.

8 S A B L i n s e q u e nti al d o m ai ns

R es ults pr es e nt e d t h us f ar s h o w S A B L a n d I- S A B L i n c o nt e xt u al b a n dit d o m ai ns,  w h er e t h e
a g e nt c a n o bs er v e t h e  w orl d, b ut it’s a cti o ns h a v e n o eff e ct o n t h e pr o b a bilit y of s u bs e q u e nt
st at es of t h e  w orl d.  We c a n als o a p pl y t h es e al g orit h ms t o s e q u e nti al d e cisi o n  m a ki n g d o m ai ns.
F or ef fi ci e n c y,  w e li mit t h e s et of p oli ci es c o nsi d er e d b y S A B L a n d I- S A B L, b y ass u mi n g
t h at t h e tr ai n er t e a c h es a n o pti m al p oli c y f or s o m e s et of c o n diti o ns. I n a gri d  w orl d, f or
e x a m pl e, t h e tr ai n er c o ul d t e a c h t h e a g e nt t o r e a c h s o m e g o al l o c ati o n.

We t est e d S A B L a n d I- S A B L f or s e q u e nti al d o m ai ns i n a 1 5 b y 1 5 gri d  w orl d  wit h a
si m ul at e d tr ai n er.  T h e al g orit h ms c o nsi d er e d 4 8 p ossi bl e g o al st at es, as  w ell as t w o s p e ci al
ki n ds of “ o bst a cl es ” —st at es t h e a g e nt c o ul d  m o v e i n t o or o ut of b ut  m a y h a v e n e e d e d t o
a v oi d — d e p e n di n g o n t h e p arti c ul ar o bst a cl e c o n diti o n.  T h er e  w er e f o ur diff er e nt o bst a cl e
c o n diti o ns ( n o o bst a cl es, a v oi d t y p e o n e, a v oi d t y p e t w o, a v oi d b ot h t y p es), r es ulti n g i n
4 8 × 4 = 1 9 2 p ossi bl e o pti m al p oli ci es. Fi g ur e 8 s h o ws t h e gri d  w orl d us e d.  N ot e t h at
t h e l e ar n ers di d n ot a ct u all y r e c ei v e a n y i nf or m ati o n a b o ut t h e g o al or o bst a cl es fr o m t h e
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Fi g. 8 T h e s e q u e nti al d o m ai n.
Bl u e s q u ar es r e pr es e nt p ossi bl e
g o al st at es, cir cl es r e pr es e nt
o bst a cl es of t y p e o n e a n d st ars
r e pr es e nt o bst a cl es of t y p e t w o
( C ol or fi g ur e o nli n e)

e n vir o n m e nt, a n d s o c o ul d o nl y l e ar n t h e c orr e ct b e h a vi or b as e d o n tr ai n er f e e d b a c k. I n t h e
s e q u e nti al c as e, S A B L a n d I- S A B L si m pl y ass u m e d t h at t h e tr ai n er’s t ar g et p oli c y  w as o n e
of t h e 1 9 2 p ossi bl e o pti m al p oli ci es.

I n t his c as e S A B L a n d I- S A B L o nl y c o nsi d er e d a s m all, fi nit e s et of p ossi bl e μ p ar a m et er
c o m bi n ati o ns, r e pr es e nti n g b al a n c e d, r e w ar d-f o c us e d, a n d p u nis h m e nt-f o c us e d tr ai n er str at e-
gi es.  A d diti o n all y, t o l e v er a g e t his si m pli fi c ati o n r at h er t h a n us e  E M o n t h e e ntir e f e e d b a c k
hist or y at e a c h st e p,  w e a d a pt e d I- S A B L t o u p d at e its pri or b eli ef i n e a c h str at e g y a n d p oli c y
t o t h e p ost eri or pr o b a bilit y distri b uti o n gi v e n b y t h e  m ost r e c e nt f e e d b a c k a n d t h e c urr e nt
distri b uti o n o v er tr ai n er str at e gi es.  Tr ai n er str at e gi es  w er e d e fi n e d b y {μ + , μ− } = {0 .1 , 0 .1 }
f or t h e b al a n c e d f e e d b a c k str at e g y, {μ + , μ− } = {0 .1 , 0 .9 } f or t h e r e w ar d-f o c us e d str at e g y,
a n d {μ + , μ− } = {0 .9 , 0 .1 } f or t h e p u nis h m e nt-f o c us e d str at e g y.  We di d n ot c o nsi d er t h e
i n a cti v e str at e g y, as it  w as u n c o m m o n i n t h e us er st u d y. F or all str at e gi es, = 0 .0 5,  w hi c h is
l o w er t h a n t h e ass u m e d err or r at e us e d i n o ur us er st u di es, b ut is cl os er t o t h e a ct u al err or r at e
o bs er v e d i n t h os e st u di es.  We s h o ul d n ot e t h at t h e v al u es of t h e μ p ar a m et ers  w er e c h os e n
t o r e pr es e nt str at e gi es t h at str o n gl y pr ef er e x pli cit f e e d b a c k i n all c as es, or e xtr e m el y r e w ar d
or p u nis h m e nt f o c us e d str at e gi es.  T his  w as d o n e b ot h t o hi g hli g ht diff er e n c es b et w e e n t h e
l e ar ni n g al g orit h ms, a n d b e c a us e s u c h str o n g pr ef er e n c es  w er e o bs er v e d i n t h e us er st u di es.

Ta bl e 6 s u m m ari z es t h e r es ults f or all al g orit h m a n d tr ai n er str at e g y p airs. F or all si m u-
l at e d tr ai n ers, I- S A B L a n d S A B L usi n g t h e c orr e ct f e e d b a c k str at e g y i d e nti fi e d t h e i nt e n d e d
p oli c y t h e f ast est, a g ai n d e m o nstr ati n g t h at I- S A B L d o es n ot s uff er si g ni fi c a ntl y fr o m i niti al
u n c ert ai nt y a b o ut t h e tr ai n er str at e g y.  W h e n t h e si m ul at e d tr ai n er us e d a b al a n c e d str at e g y,
S A B L usi n g i n c orr e ct str at e g y ass u m pti o ns p erf or m e d  w ors e, b ut n ot si g ni fi c a ntl y  w ors e,
li k el y d u e t h e f a ct t h at t h e si m ul at e d tr ai n er al m ost al w a ys g a v e e x pli cit f e e d b a c k.  R e g ar d-
l ess of t h eir str at e g y ass u m pti o n, S A B L l e ar n ers al w a ys i nt er pr et e x pli cit f e e d b a c k i n t h e
s a m e  w a y.  H o w e v er,  w h e n t h e tr ai n er d o es n ot e m pl o y a b al a n c e d str at e g y, i n c orr e ct S A B L
ass u m pti o ns  will b e  m or e pr o bl e m ati c. If S A B L ass u m es a b al a n c e d f e e d b a c k str at e g y  w hil e
t h e tr ai n er f oll o ws a r e w ar d-f o c us e d str at e g y, t h e p oli c y c a n b e l e ar n e d, b ut  m or e st e ps ar e
n e e d e d t o d o s o b e c a us e  m a n y st e ps r e c ei v e n o e x pli cit f e e d b a c k a n d s o ar e i g n or e d. If
S A B L ass u m es t h e o p p osit e str at e g y ( e. g., ass u mi n g p u nis h m e nt-f o c us e d  w h e n it is a ct u all y
r e w ar d-f o c us e d), t h e n t h e a g e nt  m a y n e v er l e ar n t h e c orr e ct p oli c y.  Ass u mi n g t h e o p p osit e
str at e g y li k el y p erf or ms s o p o orl y b e c a us e it  misi nt er pr ets  w h at a l a c k of f e e d b a c k  m e a ns. If
S A B L ass u m es a p u nis h m e nt-f o c us e d str at e g y  w h e n it’s a ct u all y a r e w ar d-f o c us e d str at e g y,
it  will i nt er pr et t h e l a c k of f e e d b a c k  w h e n its a cti o n is i n c orr e ct as e vi d e n c e t h at it is c orr e ct.
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T a bl e 6 F or all al g orit h m a n d si m ul at e d tr ai n er p airs t est e d, t h e a v er a g e n u m b er of st e ps b ef or e t h e a g e nt
c orr e ctl y i d e nti fi e d t h e i nt e n d e d p oli c y as t h e  m ost li k el y, a n d t h e a v er a g e n u m b er of e x pli cit f e e d b a c ks t h at
w er e pr o vi d e d b ef or e t h e i nt e n d e d t as k  w as i d e nti fi e d as t h e  m ost li k el y

Tr ai n er’s
str at e g y

L e ar ni n g
al g orit h m

I d e ntif y
p oli c y

9 5  %  C o n fi d e n c e
i nt er v al

#  E x pli cit
f e e d b a c ks

9 5  %  C o n fi d e n c e
i nt er v al

B al a n c e d
f e e d b a c k

I- S A B L 4 4. 4 ± 1 1. 7 3 9. 1 ± 1 0. 4

S A B L — b al a n c e d
f e e d b a c k

4 6. 7 ± 9. 3 4 0. 5 ± 8. 1

S A B L —r e w ar d-
f o c us e d

6 7. 3 ± 2 1. 1 6 0. 0 ± 1 9. 3

S A B L —
p u nis h m e nt-
f o c us e d

6 5. 6 ± 2 0. 6 5 8. 1 ± 1 8. 5

R e w ar d-f o c us e d I- S A B L 6 8. 7 ± 2 0. 5 5 4. 1 ± 1 7. 7

S A B L — b al a n c e d
f e e d b a c k

1 5 2. 8 ± 2 7. 9 7 1. 4 ± 1 8. 2

S A B L —r e w ar d-
f o c us e d

6 5 ± 2 3. 8 5 0. 8 ± 2 0. 4

S A B L —
p u nis h m e nt-
f o c us e d

N/ A  N/ A N/ A  N/ A

P u nis h m e nt-
f o c us e d

I- S A B L 7 6. 2 ± 2 5. 4 1 4. 8 ± 3. 9

S A B L — b al a n c e d
f e e d b a c k

1 9 0. 9 ± 2 7. 3 3 7. 4 ± 4. 5

S A B L —r e w ar d-
f o c us e d

N/ A  N/ A N/ A  N/ A

S A B L —
p u nis h m e nt-
f o c us e d

5 1. 3 ± 1 7. 9 1 1. 1 ± 2. 8

“ N/ A” i n di c at es t h at t h e al g orit h m  w as u n a bl e t o l e ar n t h e c orr e ct p oli c y i n t h e  m aj orit y of tr ai ni n g r u ns

I n t h es e r es ults, it is als o i nt er esti n g t o n ot e h o w f e w e x pli cit f e e d b a c ks ar e r e q uir e d f or
I- S A B L a n d S A B L ( wit h a c orr e ct str at e g y ass u m pti o n) t o l e ar n  w h e n t h e tr ai n er f oll o ws a
p u nis h m e nt-f o c us e d str at e g y.  As it l e ar ns,  m or e of t h e a g e nt’s a cti o ns ar e c orr e ct, r es ulti n g i n
l ess e x pli cit f e e d b a c k; si n c e I- S A B L ( a n d S A B L ass u mi n g a p u nis h m e nt-f o c us e d str at e g y)
c orr e ctl y i nt er pr et t his l a c k of e x pli cit f e e d b a c k as p ositi v e, it d o es n ot hi n d er l e ar ni n g. I n t h es e
e x p eri m e nts t h e a ct u al a n d ass u m e d err or r at es w er e r el ati v el y l o w at 0 .0 5.  W hil e a hi g h er
err or r at e  w o ul d c ert ai nl y h a v e  m e a nt t h at e a c h al g orit h m  w o ul d t a k e l o n g er t o l e ar n ( m or e
mist a k es  w o ul d n e e d t o b e c orr e ct e d, r e q uiri n g  m or e ti m e a n d  m or e f e e d b a c k), it is u n cl e ar
h o w t h e err or r at e  w o ul d aff e ct t h e r el ati v e p erf or m a n c e of S A B L a n d I- S A B L.  W hil e  m or e
err o n e o us f e e d b a c k c o ul d r e d u c e t h e q u alit y of I- S A B L’s esti m at e of t h e tr ai n er’s str at e g y,
k n o wl e d g e of tr ai n er str at e g y c o ul d als o all o w I- S A B L t o  m or e q ui c kl y r e c o v er fr o m  mist a k es.

9  F ut u r e di r e cti o ns

T his  w or k h as o nl y c o nsi d er e d c as es  w h er e t h e st at e a n d a cti o n s p a c es of t h e t as k d o m ai n
ar e dis cr et e, s u c h t h at t h e tr ai n er’s d esir e d b e h a vi or c a n b e r e pr es e nt e d si m pl y as a list of
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each state with its correct action. In many real world domains with large or continuous state
spaces, it may not be possible for the target policy to be represented in such an explicit
way, or it may be dif cult for the agent to demonstrate every state action pair possible.
In such cases, it may be necessary for the policy to be represented by some parametric
function approximator that can handle continuous state features, and that allows for some
degree of action generalization between states. While this work has considered only discrete
policies, we suggest that it would be possible to learn such continuous, parametric policy
representations under the SABL/I-SABL framework. For example, policies in continuous
spaces can be represented as multilayer perceptrons, such that learning the target policy
involves nding weight and bias parameters of the network that minimize or maximize some
objective function based on examples of that policy [26]. The policy likelihood function that
SABLattempts tomaximize could be used as an objective function for training such a network
via backpropagation. Similarly, the expected likelihood function maximized in each iteration
of I-SABL’s expectation-maximization algorithm could be used as the objective function for
training a network, such that I-SABL would attempt to nd a maximum likelihood estimate
of the network parameters, rather than of the policy itself.

Real world domains are also often sequential in nature, such that information about the
dynamics of the environment can be used to help identify the target policy. While this work
considers learning from feedback in sequential domains, by combining our learning frame-
work with algorithms for inverse reinforcement learning, we note that the applicability of
such IRL algorithms to many real world domains often depends on their ability to compute
good, if not optimal, policies in those domains. Much of the work in inverse reinforcement
learning has been restricted to cases where the state space is discrete, where algorithms such
as value iteration, policy iteration, or linear programming can be used to compute optimal
policies [21,22]. Even when reward functions can be modeled based on continuous features,
the underlying domain may still need to be discretized during the planning phase [1]. Simi-
larly, our maximum likelihood IRL approach relies on the existence of an ef cient planning
algorithm for the task domain, which in our experiments is discrete. Future work might con-
sider how SABL and I-SABL could be combined with IRL algorithms that are better suited
to continuous domains [28]. Extensions of our learning algorithms to continuous domains,
however, are beyond the scope of this work and are reserved for future studies.

As discussed earlier in this work, there are many aspects of trainer strategies which are not
accounted for in our model. For one, we have no explicit model of how a trainer’s strategy
can change over time, or what such changes in and of themselves are meant to convey to
the learning agent. In the survey section of the user studies, some participants discussed how
they changed strategy over time. One participant explained, “I rewarded for every time the
dog faced the side the rat came from. I ignored incorrect responses. As the dog became better
and better at heading to the rat side, I implemented random reward for correct responses and
continued to ignore incorrect responses.”

Another participant similarly believed that rewards would be more useful early, while
punishments would be better later on, “I allowed for mistakes in the beginning because the
dog was ‘new’ to the task. I rewarded any successful attempts with increasing amounts of
reward up to 5 rewards per successful guess. Then, I applied punishments to correct mistakes
since the dog had ‘learned’what the correct actionwas.” In both of these cases, themeaning of
the lack of feedback changes over time, going from implicitly negative to neutral or implicitly
positive. Our model could be extended to account for this change, so as to correctly interpret
the lack of feedback throughout the training session.

Future work could also consider how to handle various types of trainer error. Speci cally,
we currently have no way to account for delay in the feedback given that might cause it to
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be associated with the wrong action. There is also the possibility that feedback has different
interpretations for different parts of a task, that is, for different subsets of states and actions.
Developing models of feedback that account for these more complex and variable training
strategies would allow us to build learning agents that could better adapt to the user’s strategy.

10 Conclusion

This work has demonstrated that, when considering the problem of learning from trainer
feedback, signi cant improvements in learning performance can be achieved by applying
relatively simple models of trainer strategy. We have also shown that there is signi cant
variability in trainer strategy that can be exploited. We can draw two main conclusions from
the empirical results presented in this work.

1. Human trainers use a variety of strategies when training virtual agents, and may change
strategy while training. These results suggest that trainers’ choices of strategies can be
in uenced by the trainers’ backgrounds, and, at least to some degree, by the nature of
the training task itself. The different strategies followed by trainers necessitate different
interpretations of cases where no feedback is given, with the lack of feedback indicating
a correct action under some strategies, and an incorrect action under others.

2. We have presented two probabilistic inference algorithms, SABL and I-SABL, which
explicitly take trainer strategy into account. We have demonstrated with real users that
these algorithms can learn behaviors with fewer trainer feedbacks than algorithms based
on a numerical interpretation of feedback, and we have demonstrated that I-SABL in
particular is able to adapt to trainers’ strategies online, and so is able to learn more
ef ciently by correctly interpreting what the lack of feedback means.

Based on these results we argue that incorporating similar, though potentially more general
models of human feedback into systems designed to learn and reason in more complicated,
real-world environments will allow us to build robots and virtual agents that can learn useful
behaviors ef ciently, and in a way that is intuitive for the average user who has little or no
backgrounds in programming or arti cial intelligence.
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